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CHAPTER 1 - INTRODUCTION

Some of the text in this chapter was reprinted or modified from: Negmeldin, A. T.;
Padige, G.; Bieliauskas, A. V.; Pflum, M. K. H., Structural Requirements of HDAC
Inhibitors: SAHA Analogues Modified at the C2 Position Display HDACG6/8
Selectivity, ACS Medicinal Chemistry Letters 2017, 8 (3), 281-286; Bieliauskas, A.
V.; Weerasinghe, S. V. W.; Negmeldin, A. T.; Pflum, M. K. H., Structural
requirements of histone deacetylase inhibitors: SAHA analogs modified on the
hydroxamic acid, Arch. Pharm. (Weinheim, Ger.) 2016, 349, 373-382; and
Negmeldin, A. T. and Pflum, M. K. H., The structural requirements of histone
deacetylase inhibitors: SAHA analogs modified at the C4 position display dual
HDACG6/HDACS selectivity, European Journal of Medicinal Chemistry (Submitted)

1.1. Epigenetic mechanism and gene expression

The chromosome is an important X-shaped cellular structure that carry all the
hereditary genetic information of the organism (genome) in the form of genes. In
eukaryotes, the chromosome is a highly condensed structure of long chromatin fiber,
which is a complex that consists of multiple nucleosome units (Figure 1.1). DNA
double strand (blue strand) that carries genetic information is wrapped around
histone proteins forming each nucleosome unit (Figure 1.1).1? The compactness of
the nucleosome structure is affected by different epigenetic modifications, which by
its turn affects DNA accessibility.?

Epigenetic modifications play an essential role in regulation of gene
transcription, DNA repair, DNA replication, and cell growth through mechanisms
independent of structure of DNA.>* Several epigenetic changes are known to date,
such as DNA methylation and histone tail modifications. Post-translational
modifications of histone proteins are among the major dynamic epigenetic changes
that regulate DNA expression and replication. Several post-translational covalent
modifications of histone proteins are known, such as acetylation, methylation,

phosphorylation, and ubiquitination (Figures 1.1 and 1.2A).*° Acetylation is
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controlled by two main classes of enzymes, histone acetyltransferases (writers) and

histone deacetylases (erasers)(Figure 1.1).2

% Nucleus

i Chromosome
Chromatin fibre

Writers Erasers Readers

i ‘ ‘,7 i " 7 )‘Sl;)/'d )\3 ar L)?/,_,
ot & 23 ' ‘ ia < | g ! i
o/k-m oo ]

Histone Histone Bromodomains,
acetyltransferases, deacetylases, chromodomains,
Histone Lysine PHD fingers.
methyltransferases demethylases malignant
brain tumour
domains,
Tudor domains,
PWWP domains

DNA methylation

TR AFAMT

Figure 1.1. Chromosome structure showing the chromatin fiber and the nucleosome
unit with the wrapping of DNA around histone proteins.> Post-translational
modifications of Histone N-terminal residues are governed by several enzymes
including, histone acetyltransferases and histone methyltransferases (readers),
histone deacetylases and lysine demethylases (erasers). Reused with permission
from nature publishing group (see Appendix E).

1.2. Regulation of transcription by Histone Deacetylase (HDAC) Proteins

Histone Deacetylase (HDAC) proteins play an essential role in the regulation
of transcription in a balanced process with histone acetyl transferases (Figures 1.2A
and 1.2B). DNA double strands are tightly wrapped around histone proteins due to
the electrostatic interaction between the positively charged free amines of lysine side
chains that are abundant in the histone protein N-terminal tails, and the negatively
charged DNA backbone (Figures 1.2A and 1.2C). As a result of the tight interaction,

DNA double strands are inaccessible to transcription factors in this state and
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transcription is repressed (Figure 1.2A). Upon acetylation of the g-amino group on
the side chains of lysine amino acids with histone acetyl transferases (HATS), the
compact structure will become loosened due to the acetylation of the amine groups
and loss of the electrostatic interaction. In the acetylated state, the nucleosomal
DNA will be accessible to transcription factors and will become transcriptionally
active (Figures 1.2B and 1.2C). Several other key enzymes are involved in activation
of transcription such as, lysine methyltransferases and lysine demethylases (Figure
1.2B). On the other hand, HDAC proteins catalyze deacetylation of acetylated lysine
residues, which will turn off transcription (Figure 1.2A and 1.2C).° In addition,
deubiquitination, methylation and demethylation of specific lysine amino acid
residues can also lead to repression of transcription (Figure 1.2A). The overall
acetylation levels and the dynamic balance of both acetylation and deacetylation
reactions regulate gene expression as part of several post translational modifications

to histone tails of nucleosome units.*®
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A)

Acetylation {HATs)
Lysine methylation (H3Kd, H3KE, H3K79)
Lyzine de-methylation (H2K3, H3K27, HAK20)
Mono-ubiquination

Open chromatin
DMNA accessible
Transcription activated

De-acetylation (HDACS)

Lysine methylation (H3K9, H3K27, HA4K20)
Lysine de-methylation (H3K4, HIKE, HIKT79)
De-ubigquination (DUBs)
Mechanisms linked to transcriptional repression|

w]" + Histone VT‘ H
HN NH3 acetyltransferases (HAT) - HN N\H/CH3
j/;\/\/ D Histone deacetylases jg\/\/ (0]

o} (HDAC) o
Figure 1.2. Role of  histone deacetylase (HDAC) proteins in
regulation of transcription. A) The wrapping of double stranded
DNA around histone proteins, makes the DNA inaccessible to transcription factors.”
B) Acetylation, methylation, demethylation, or ubiquitination of lysine residues
loosens the histone structure, making the DNA accessible to transcription factors.>
C) Lysine residue acetylation with histone acetyltransferase and deacetylation with

histone deacetylase (HDAC). Reused from open access article that permits
unrestricted use or reproduction with proper citation (see Appendix E).

1.3. Classification of HDAC proteins

The HDAC family contains 18 different proteins (Figure 1.3), which are
grouped into four classes according to phylogenetic analysis (homology with yeast
HDAC proteins), size, cellular localization, and number of catalytic active sites.’
Eleven of them are metal-dependent, while the rest are NAD* dependent. The metal-

dependent HDAC proteins are classified into classes I, Il, and IV, while class Il are
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NAD* dependent.” The eleven metal-dependent HDAC proteins are the focus of this

work.
Suhc.ellt{lar Catalytic domain Cofactor
localization
[~ HDAC1 Nucleus —|—— 1+
HDAC2 Nucleus e I
Class| = Zn
HDAC3 Nucleus>Cytosol 4
HDAC8 Nucleus>Cytosol —| 1+
S
[ |HDAC4  Nucleus, Cytosol I
HDAC5 Nucleus, Cytosol I
lla
hpacy  Nudeus,Cytosol,
Mitochondria n?*
Classll =
HDAC9 Nucleus, Cytosol 11—
HDAC6 Cytosol>Nucleus —_— o | —
lib
HDAC10 Cytosol>Nucleus —:]—

]

Nucleus, Cytosol,
Mitochondria

Class IV HDAC11 Nucleus S I n¥

Figure 1.3. Classification of HDAC proteins into metal dependent and NAD
dependent, and the classification of the metal dependent into three classes.?
Reused with permission from Elsevier Ltd. (see Appendix E).

Class lll Sirtuins — — NAD*

+

Class | HDAC proteins include HDAC1, HDAC2, HDACS3, and HDACS (Figure
1.3), which are relatively smaller proteins (377-488 amino acids) compared to class
Il HDACs and are predominantly nuclear enzyme.®® Both HDAC3 and HDACS8 can
shuttle between the nucleus and the cytoplasm. HDAC1, 2, 3, and 8 are grouped in
the same class due to homology to yeast RPD3, ubiquitous expression in almost all
cell lines and tissues, and their key role in cell survival and proliferation (Figure 1.3).°

Class Il HDAC proteins are relatively large proteins (669-1215 amino acids),
have sequence similarity with yeast HDA1, and maintain the ability to shuttle

between the cytoplasm and nucleus.®*° Class Il HDACs are further divided into two
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subclasses, class lla and llb. Class lla includes HDAC4, HDAC5, HDAC7, and
HDAC9 (Figure 1.3).° On the other hand, class IIb includes HDAC6 and HDAC10,
which are mainly cytoplasmic and contain two catalytic domains. HDAC11 is a
unigue member of the HDAC family with a size of 347 residues and a sequence
|.8-9, 11

similarity to both classes | and |

1.4. Catalysis mechanism of HDAC proteins

All HDAC enzymes have high sequence similarity in their active sites.*® For
the deacetylation reaction, several essential amino acids are important for catalysis.
For example, based on the HDACG6 crystal structure, the zinc atom, histidine 573
(H573), histidine 574 (H574), and tyrosine 745 (Y745) have a crucial role in the
deacetylation mechanism (Figure 1.4).*** The metal ion and the three amino acids
are conserved in most of the HDAC isoforms. The exception is class lla enzymes, in
which only the metal ion and two histidine amino acids are maintained. **?3 The
mechanism of deacetylation is believed to be similar among all of the HDAC
isoforms, with differences in catalytic efficiency between them.?*?® The crystal
structure of the HDACG6 catalytic domain 2 (CD2) was recently reported with several
snapshots showing all the key mechanistic steps in catalysis (Figure 1.4).** First, a
water molecule (red sphere in Figure 1.4a) was chelated (red dashed line) with the
zinc atom (grey sphere) and hydrogen bonded with the two histidine amino acids
residue (black dashed lines with H573 and H574) (Figure 1.4a). In the same
snapshot, an empty space between the chelated water molecule and Y745 is shown
and is proposed to be where a substrate fits in the binding site. In order to study the
binding of the substrate a-tubulin K40 peptide (orange structure in Figure 1.4b),

Y745 was mutated to phenylalanine (Y745F) to prevent catalysis and capture the
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HDACG6-substrate interaction. The second crystallographic snapshot showed the
enzyme substrate-complex with the carbonyl of the e-acetyl lysine coordinated to the
metal ion without displacing the coordinated water molecule (Figure 1.4b). Next,
H574, which is known to act as a general acid during catalysis, was mutated to
alanine (H574A) in order to capture the enzyme during the transition state (Figure
1.4c). The snapshot showed a tetrahedral intermediate, indicating that H573 acted
as a general base to deprotonate the water molecule. Nucleophilic attack by the
deprotonated water molecule on the substrate carbonyl formed the tetrahedral
intermediate in the active site, which was stabilized by both the zinc atom and Y745
(Figure 1.4c). Finally, the tetrahedral intermediate collapsed and yielded the free ¢-
lysine side chain of the substrate (not obtained in the crystal structure), and an
acetate anion that was observed and stabilized by the metal ion, H573, H574, and

Y745 (Figure 1.4d).
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Figure 1.4. Snapshots of the HDACG6 catalytic domain 2 during catalysis with the
corresponding proposed reaction shown below each snapshot. See text for complete
explanation of images.'* Reused with permission from nature publishing group (see
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1.5. HDAC proteins and cancers

HDAC proteins regulate the expression of several cancer-related proteins
involved in cell signaling, transcription, and tumor suppression through the
deacetylation of nucleosomal histone proteins.?’>° Mutations of HDAC proteins in
cancer are rare, while aberrant or overexpression of HDAC proteins is common with
many types of cancers.® Overexpression of HDAC proteins results in unregulated
transcription and aberrant protein activity and function, which is linked to several
diseases, including cancer.?® HDAC proteins are also implicated in several other
diseases, such as asthma and schizophrenia.**? The aberrant expression of HDAC
proteins in many cancers leads to poor expression of tumor suppressor proteins that
are normally expressed in normal cells.®

Several reports have shown aberrant expression of individual HDAC isoforms

4 ovarian,*®

in different types of cancers. HDAC1 was overexpressed in lung,’
gastric,*® prostate,®” breast,® and colon cancers.*®* HDAC2 was overexpressed in
colorectal and gastric cancers.*® HDAC8 was highly expressed in neuroblastoma
patients, leading to cancer progression and poor survival rates.** In addition, HDAC8
inhibition showed promising results in T-cell lymphoma and leukemia.** Class I
HDAC6 was overexpressed in oral squamous cell carcinoma and ovarian cancer.*>
“ In additon, HDAC6 is implicated in several non-epigenetic cancer-related
intracellular functions.***® Overexpression of both HDAC6 and HDACS8 was linked to

breast cancer metastasis and invasion.*’

1.6. Anti-tumor activity of HDAC inhibitors

Due to their key role in cancer, HDAC proteins have emerged as interesting

targets for cancer treatment, and several anti